
pytabby
Release 0.1.0

David Taylor

Mar 14, 2020

CONTENTS

1 Installation 3

2 Documentation 5

3 Usage 7

4 See it in action! 9

5 FAQ 11

6 Dependencies 13

7 Contents 15
7.1 Tutorial . 15
7.2 API . 17
7.3 Annotated config file . 18
7.4 Example app . 19
7.5 Sample InvalidSchemaError output . 24
7.6 Blank config templates . 25
7.7 Changelog . 26
7.8 Wish list . 26

8 Indices and tables 27

Index 29

i

ii

pytabby, Release 0.1.0

A flexible, non-opinionated, tabbed menu system to interactively control program flow for terminal-based programs.
It’s a class with one sole public method which runs in a while loop as you switch tabs (if you want tabs, that is;
you’re free not to have any) or if you enter invalid input, and then returns a string based on the value you selected that
you can use to control the outer program flow.

Of course, you can run the class itself in a while loop in the enclosing program, getting menu choice after menu
choice returned as you navigate a program.

Blog post about why I did this.

CONTENTS 1

http://travis-ci.org/Prooffreader/pytabby
https://ci.appveyor.com/project/Prooffreader/pytabby
https://codecov.io/gh/Prooffreader/pytabby
https://www.codacy.com/app/Prooffreader/pytabby?utm_source=github.com&utm_medium=referral&utm_content=Prooffreader/pytabby&utm_campaign=Badge_Grade)
https://github.com/Prooffreader/pytabby/blob/master/LICENSE
https://github.com/ambv/black
https://github.com/Prooffreader/pytabby
https://pypi.org/project/pytabby
https://pytabby.readthedocs.io/en/latest/
https://pyup.io/repos/github/Prooffreader/pytabby/
http://www.prooffreader.com/2019/04/27/pytabby-a-tabbed-menu-system-for-console-based-python-programs/

pytabby, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION

pip install pytabby

Meow.

3

pytabby, Release 0.1.0

4 Chapter 1. Installation

CHAPTER

TWO

DOCUMENTATION

On readthedocs.

5

https://pytabby.readthedocs.io/en/latest/

pytabby, Release 0.1.0

6 Chapter 2. Documentation

CHAPTER

THREE

USAGE

from pytabby import Menu
myconfig = Menu.safe_read_yaml('path/to/yaml')
or Menu.read_json() or just pass a dict in the next step
mymenu = Menu(myconfig)
result = mymenu.run()

if result == 'result1':
do_this_interesting_thing()

elif result == 'result2':
do_this_other_thing()

etc...

7

pytabby, Release 0.1.0

8 Chapter 3. Usage

CHAPTER

FOUR

SEE IT IN ACTION!

9

pytabby, Release 0.1.0

10 Chapter 4. See it in action!

CHAPTER

FIVE

FAQ

*Why did you make this? Well, it was one of those typical GitHub/PyPI scenarios, I wanted a specific thing, so I
made a specific thing and then I took >10X the time making it a project so that others can use the thing; maybe
some people will find it useful, maybe not. I like running programs in the terminal, and this allowed me to put
a bunch of utilities like duplicate file finders and bulk file renamers all under one umbrella. If you prefer GUIs,
there are plenty of simple wrappers out there,

Why can’t I return handlers? Out of scope for this project at this time, but it’s on the Wish List. For now, the Menu
instance just returns strings which the outer closure can then use to control program flow, including defining
handlers using control flow/if statement based on the string returned by Menu.run().

Why are my return values coming in/out strings? To keep things simple, all input and output (return) values are
converted to string. So if you have config['tabs'][0]['items][0]['item_returns'] = 1, the
return value will be ‘1’.

Why do ‘items’ have both ‘item_choice_displayed’ and ‘item_inputs’ keys? To keep things flexible, you don’t
have to display exactly what you’ll accept as input. For example, you could display ‘yes/no’ as the suggested
answers to a yes or no question, but actually accept [‘y’, ‘n’, ‘yes’, ‘no’], etc.

I have ‘case_sensitive’ = False, but my return value is still uppercase. case_sensitive only affects inputs,
not outputs

What’s up with passing a dict with the tab name as a message to Menu.run()? The message might be different
depending on the tab, and run() only exits when it returns a value when given a valid item input. It changes
tabs in a loop, keeping that implementation detail abstracted away from the user, as is right.

11

pytabby, Release 0.1.0

12 Chapter 5. FAQ

CHAPTER

SIX

DEPENDENCIES

• PyYAML>=5.1

• schema>=0.7.0

Note: You can have two or more tabs, in which case you will see the tab headers you can switch between above the
menu choices, or you can

13

pytabby, Release 0.1.0

14 Chapter 6. Dependencies

CHAPTER

SEVEN

CONTENTS

7.1 Tutorial

Everything depends on a good, valid config file. For this tutorial, we’ll use the following short YAML (found in the
Github repo as example_configs/tutorial.yaml):

case_sensitive: False
screen_width: 80
tabs:
- tab_header_input: a
tab_header_description: Menu a
items:

- item_choice_displayed: 1
item_description: First choice
item_inputs:
- 1

item_returns: choice1
- item_choice_displayed: 2
item_description: Second choice
item_inputs:
- 2

item_returns: choice2
- tab_header_input: b
tab_header_long_description: You have just selected Menu B
items:

- item_choice_displayed: x,y,x
item_description: x or y or z
item_inputs:
- x
- y
- z

item_returns: xyz
- item_choice_displayed: q
item_description: Quit
item_inputs:
- Q
- qUiT
- bye

item_returns: quit

This is a config for two tabs, each with two choices.

First, import the Menu class:

15

pytabby, Release 0.1.0

>>> from pytabby import Menu

Then, you need a config file. There are two static methods you can call from the uninstantiated class,
safe_read_yaml(path) and read_json path. Or you can write a python dict and pass that. Here, let’s read
the YAML file.

>>> config = Menu.safe_read_yaml('tutorial.yaml') # the file shown above

And now instantiate the class with the config dict:

>>> menu = Menu(config)

At this point, if your config has an invalid schema, the Menu class will raise an InvalidSchemaError and will output
ALL the schema violations to stderr. (As opposed to raising just one, Then you fixing it, then raising another, you
fixing it, etc.)

If the menu instance is instantiated without errors, you can just run it!

>>> menu.run()

You’ll see the following printed to stdout:

[a:Menu a|b]
======== --

[1] First choice
[2] Second choice
?:

Note that the first tab, a, is underlined, showing that it’s the active tab. Tab b has no description in the config, so it’s
very short.

Now enter ‘c’ (an invalid choice) at the prompt. A new line appears (the program does not resend the entire meny to
stdout):

?: c
Invalid, try again:

Now enter ‘b’ to switch to that tab. The following is sent to stdout:

Invalid, try again: b
Change tab to b
You have just selected Menu B

[a:Menu a|b]
-------- ==

[x,y,x] x or y or z
[q] Quit
?:

As you can see, the second tab, b, is now underlined. (It really is more obvious if you use descriptions.)

The program output Change tab to & the tab_header_input

Since for this second tab, ‘tab_long_description’ was defined, that was printed as well (You have just
selected Menu B, how boring).

Now let’s actually submit a valid choice (an invalid choice will give the same ‘Invalid, try again: ‘ message as above).

16 Chapter 7. Contents

pytabby, Release 0.1.0

?: x

('b', 'xyz')

Now the menu has returned a value, a tuple of the tab input and the return value. The tuple is returned because
different tabs could have the same return value. If there were only one tab, only the return value 'xyz' would have
been returned.

7.2 API

class pytabby.Menu(config, start_tab_number=0)
Base class to import to create a menu

Parameters

• config (dict) – a nested dict, in a schema which will be validated, containing everything
needed to instantiate the Menu class

• start_tab_number (int) – default 0, the number of the tab to start at

safe_read_yaml(path_to_yaml)
static method to read a yaml file into a config dict

read_json(path_to_json)
static method to read a json file into a config dict

run(message=None)
Displays menu at currently selected tab, asks for user input and returns it as a string

Examples

>>> config = Menu.safe_read_yaml('config.yaml')
>>> menu = Menu(config, start_tab_number=0)
>>> result = menu.run()
>>> if result = "action name":
>>> my_great_function()

>>> # with a submenu
>>> config = Menu.safe_read_yaml('config.yaml')
>>> menu = Menu(config, start_tab_number=0)
>>> result = menu.run()
>>> if result = "further options":
>>> submenu = Menu(submenu_config)
>>> if submenu_result = "action name":
>>> my_great_function()

7.2. API 17

pytabby, Release 0.1.0

7.3 Annotated config file

Here is a YAML config file, annotated to explain all the keys/values/lists etc.

case_sensitive: False # optional, boolean, default False
screen_width: 80 # optional, integer, default 80
tabs: # if there's only one tab, there should be no headers. In fact, you can leave
→˓out the tabs

key entirely and have 'items' as a top-level key.
- tab_header_input: a # this is the input that will change to this header; it can

→˓be any length
tab_header_description: First tab # this key is optional, or it can be None. It

→˓is displayed next to the tab_header_input
tab_header_long_description: Changing to First tab # this key is optional, or it

→˓can be set to None.
it is displayed only when

→˓changing tabs
items:

- item_choice_displayed: x # an element to be put within square brackets to
→˓the left of every choice/item line

note that it does not necessarily have to
→˓correspond at all to item_inputs, although

it probably should
item_description: Choice x # displayed to the right of item_choice_displayed
item_inputs: # not displayed, a list of all inputs that will trigger the

→˓return of this item's 'item_returns'
- x

item_returns: xmarksthespot # just a string
- item_choice_displayed: y,z # note I put a comma here for clarity, but this

→˓field is not parsed, I could have put
anything eg "yz", "y|z", "y or z", "fizzbin",

→˓etc.
item_description: Choice y or z
item_inputs:
- y
- z

item_returns: yorz
- tab_header_input: bee # the second tab, note we can require a multi-letter input.

→˓ This one has no descriptions.
items:

- item_choice_displayed: z # this overlaps with the other tab, but that's okay,
→˓ it's a different tab

item_description: Choice z
item_inputs:
- z

item_returns: z
- item_choice_displayed: spam # again multi-letter
item_description: Surprise!
item_inputs:
- ham
- jam
- lamb # none of these match the choice displayed! Bad idea, but they don

→˓'t have to!
item_returns: 1001010001010 # why not?

18 Chapter 7. Contents

pytabby, Release 0.1.0

7.4 Example app

We’re going to use pytabby to control program flow in an app that takes a directory full of files and allows you to
categorize them into subdirectories.

There are two menus: [d]irectory management, where we see if folders exist and create them if needed; and [f]ile
management, where we assign files to subfolders.

Our subfolders will be named interesting and boring.

Here’s the python file, app.py. (It can also be found in the project github repo under example_app/). Instead of
dealing with an external YAML config file, I’ve just hardcoded the config as a dict into the python app:

"""A simple app that shows some capabilities of pytabby."""

import glob
import os
import shutil

from pytabby import Menu

to make this a self-contained app, hardcode the config dict

CONFIG = {
"case_sensitive": False,
"screen_width": 80,
"tabs": [{"tab_header_input": "subdirs",

"items": [{"item_choice_displayed": "c",
"item_description": "Create missing subdirectories",
"item_inputs": ["c"],
"item_returns": "create_subdirs"},
{"item_choice_displayed": "h",
"item_description": "Help",
"item_inputs": ["h"],
"item_returns": "help"},
{"item_choice_displayed": "q",
"item_description": "Quit",
"item_inputs": ["q"],
"item_returns": "quit"}]},

{"tab_header_input": "files",
"items": [{"item_choice_displayed": "i",

"item_description": "Move to interesting/",
"item_inputs": ["i"],
"item_returns": "interesting"},
{"item_choice_displayed": "b",
"item_description": "Move to boring/",
"item_inputs": ["b"],
"item_returns": "boring"},
{"item_choice_displayed": "s",
"item_description": "Skip",
"item_inputs": ["s"],
"item_returns": "skip"}]}]}

def print_help():
"""Print help string to stdout"""
help_text = (

"This app goes through the contents of a directory and allows you to
→˓categorize the files, " (continues on next page)

7.4. Example app 19

pytabby, Release 0.1.0

(continued from previous page)

"either moving them to subdirectories called interesting/ and boring/ or
→˓skipping them. This "

"functionality is handled by the second tab\n The first tab allows you to
→˓check if the "

"subdirectories already exist, allows you to create them if they are missing,
→˓shows this help "

"text and allows you to quit the app\n"
)
print(help_text)

def get_directory():
"""Get the name of a directory to use, or uses the current one"""
valid = False
while not valid:

directory = input("Enter directory (blank for current): ")
if directory.strip() == "":

directory = os.getcwd()
if os.path.isdir(directory):

valid = True
else:

print("That directory does not exist.")
return directory

def get_files():
"""Determine sorted list of files in the current working directory"""
files = []
for item in glob.glob("./*"):

add current .py file in case it's in the directory
if os.path.isfile(item) and os.path.split(item)[1] != os.path.split(__file__

→˓)[1]:
files.append(item)

return sorted(files)

def create_subdirectories():
"""Create subdirectories if they do not exist"""
for subdir in ["interesting", "boring"]:

if os.path.isdir(subdir):
print("./{0}/ EXISTS".format(subdir))

else:
os.mkdir(subdir)
print("./{0}/ CREATED".format(subdir))

print("")

def move_to_subdir(filename, subdirname):
"""Move filename to subdirname"""
if os.path.isfile(os.path.join(subdirname, filename)):

raise ValueError("File already exists in that subdirectory!")
shutil.move(filename, subdirname)
print("{0} moved to ./{1}/".format(filename, subdirname))
print("")

def main_loop(): # noqa: C901
"""Contain all the logic for the app"""

(continues on next page)

20 Chapter 7. Contents

pytabby, Release 0.1.0

(continued from previous page)

menu = Menu(CONFIG)
files = get_files()
current_position = 0
quit_early = False
files_exhausted = False
while not (quit_early or files_exhausted):

filename = files[current_position]
files_message = "Current_file: {0} of {1}: {2}".format(current_position + 1,

→˓len(files),
os.path.

→˓split(filename)[1])
message will be shown only when we are on the files tab
result = menu.run(message={'files': files_message})
if result == ("subdirs", "create_subdirs"):

create_subdirectories()
elif result == ("subdirs", "help"):

print_help()
elif result == ("subdirs", "quit"):

quit_early = True
elif result[0] == "files" and result[1] in ["interesting", "boring"]:

if not os.path.isdir(result[1]):
raise ValueError("Directory must be created first")

move_to_subdir(files[current_position], result[1])
print('File moved to {}'.format(result[1]))
current_position += 1
files_exhausted = current_position >= len(files)

elif result == ("files", "skip"):
current_position += 1
files_exhausted = current_position >= len(files)

else:
raise AssertionError("Unrecognized input, this should have been caught by

→˓Menu validator")
if files_exhausted:

print("All files done.")
else:

print("Program quit early.")

if __name__ == "__main__":

CWD = os.getcwd()
os.chdir(get_directory())
main_loop()
os.chdir(CWD)

You can try this out on any folder of files; in the GitHub repo, there’s a folder called example_app with this script,
app.py, and six photos downloaded from Unsplash, and resized to take up less space. Note that this program doesn’t
show the images, but feel free to build that capability into it!

Here’s an example terminal session using the above script:

example_app$ ls
app.py cade-roberts-769333-unsplash.jpg
prince-akachi-728006-unsplash.jpg tyler-nix-597157-unsplash.jpg
brandon-nelson-667507-unsplash.jpg colton-duke-732468-unsplash.jpg
raj-eiamworakul-514562-unsplash.jpg

7.4. Example app 21

https://unsplash.com

pytabby, Release 0.1.0

There are six jpgs we will classify as interesting or boring, plus the app.py script that is smart enough to ignore itself
when moving files. The boring and interesting folders are not yet present.

example_app$ python app.py
Enter directory (blank for current):

[subdirs|files]
======= ------

[c] Create missing subdirectories
[h] Help
[q] Quit
?: c
./interesting/ CREATED
./boring/ CREATED

If we try to create the directories again, we’ll just be told they already exist

[subdirs|files]
======= ------

[c] Create missing subdirectories
[h] Help
[q] Quit
?: c
./interesting/ EXISTS
./boring/ EXISTS

[subdirs|files]
======= ------

[c] Create missing subdirectories
[h] Help
[q] Quit
?: h
This app goes through the contents of a directory and allows you to
categorize the files, either moving them to subdirectories called
interesting/ and boring/ or skipping them. This functionality is
handled by the second tab

The first tab allows you to check if the subdirectories already
exist, allows you to create them if they are missing, shows this help
text and allows you to quit the app

[subdirs|files]
======= ------

[c] Create missing subdirectories
[h] Help
[q] Quit
?: files
Change tab to files

[subdirs|files]
------- ======

[i] Move to interesting/
[b] Move to boring/
[s] Skip
Current_file: 1 of 6: brandon-nelson-667507-unsplash.jpg
?: i
./brandon-nelson-667507-unsplash.jpg moved to ./interesting/

(continues on next page)

22 Chapter 7. Contents

pytabby, Release 0.1.0

(continued from previous page)

File moved to interesting

[subdirs|files]
------- ======

[i] Move to interesting/
[b] Move to boring/
[s] Skip
Current_file: 2 of 6: cade-roberts-769333-unsplash.jpg
?: b
./cade-roberts-769333-unsplash.jpg moved to ./boring/

File moved to boring

[subdirs|files]
------- ======

[i] Move to interesting/
[b] Move to boring/
[s] Skip
Current_file: 3 of 6: colton-duke-732468-unsplash.jpg
?: s

[subdirs|files]
------- ======

[i] Move to interesting/
[b] Move to boring/
[s] Skip
Current_file: 4 of 6: prince-akachi-728006-unsplash.jpg
?: i
./prince-akachi-728006-unsplash.jpg moved to ./interesting/

File moved to interesting

[subdirs|files]
------- ======

[i] Move to interesting/
[b] Move to boring/
[s] Skip
Current_file: 5 of 6: raj-eiamworakul-514562-unsplash.jpg
?: i
./raj-eiamworakul-514562-unsplash.jpg moved to ./interesting/

File moved to interesting

[subdirs|files]
------- ======

[i] Move to interesting/
[b] Move to boring/
[s] Skip
Current_file: 6 of 6: tyler-nix-597157-unsplash.jpg
?: i
./tyler-nix-597157-unsplash.jpg moved to ./interesting/

File moved to interesting
All files done.

Now the program exits, and we can verify all the files are where we expect

7.4. Example app 23

pytabby, Release 0.1.0

example_app$ ls
app.py boring colton-duke-732468-unsplash.jpg interesting
example_app$ ls boring/
cade-roberts-769333-unsplash.jpg
example_app$ ls interesting/
brandon-nelson-667507-unsplash.jpg prince-akachi-728006-unsplash.jpg
raj-eiamworakul-514562-unsplash.jpg tyler-nix-597157-unsplash.jpg

7.5 Sample InvalidSchemaError output

To give you an idea of the different error messages (all output at once under one umbrella exception), let’s use the
following YAML with many problems, indicated by comments:

case_sensitive: 'This should be a boolean'
screen_width: 'This should be an integer'
tabs:
- # there is no tab_header_input for this tab
the other two keys missing is ok, they're optional
items:

- item_choice_displayed: choice1
item_description: descript1
item_inputs:
- # item inputs is an empty list

item_returns: return1
- tab_header_input: a # this will conflict with an item input in another tab
items:

- item_choice_displayed: 1
item_description: descript1
item_inputs:
- 1 # int is okay, but it will conflict with another input in the same list

item_returns: None # must be coerceable to string, can't be None
- item_choice_displayed: 2

item_description: descript2
item_inputs:
- 1 # conflicts with previous item

item_returns: 1
- tab_header_input: b
items:

- item_choice_displayed: a
item_description: descripta
item_inputs:
- a # conflicts with the input to switch to another tab

item_returns: a
- item_choice_displayed: foo

item_description: bar
item_inputs:
- spam # conflicts with previous item

missing item_returns

And here’s what happens when we try to initialize a Menu instance with that config:

>>> from pytabby import Menu
>>> config = Menu.safe_read_yaml('sampleerror.yaml')
>>> menu = Menu(config)
Traceback (most recent call last):

(continues on next page)

24 Chapter 7. Contents

pytabby, Release 0.1.0

(continued from previous page)

File "<stdin>", line 1, in <module>
File "<<path redacted>>pytabby/menu.py", line 58, in __init__
validators.validate_all(self._config)

File "<<path redacted>>pytabby/validators.py", line 388, in validate_all
raise InvalidInputError("\n".join(printed_message))

pytabby.validators.InvalidInputError:
Errors:
1. schema.SchemaError: Key 'case_sensitive' error: 'This should be a boolean' should
→˓be instance of 'bool'
2. tab#0: schema.SchemaMissingKeyError: Missing key: 'tab_header_input'
3. tab#0,item#0,valid_entry#0: schema.SchemaError: <lambda>(None) should evaluate to
→˓True
4. tab#2,item#1: schema.SchemaMissingKeyError: Missing key: 'item_returns'
5. In tab#1, there are repeated input values including tab selectors: [(1, 2)].
6. In tab#2, there are repeated input values including tab selectors: [('a', 2)].
>>>

As you can see, instead of having to fix the errors one by one, the error message output six errors to fix at once.

It’s a little unpythonic, but foolish consistency is the hobgoblin of bad design, to paraphrase.

Now, it’s possible certain kinds of errors can be ‘swallowed’ by others, so there’s no guarantee that you won’t have
to do more than one round of fixes in particularly problematic configs, but this should save you much more than half
your time.

7.6 Blank config templates

For your convenience, here are blank config templates in .yaml, .json and .py (dict) formats. Add tabs and items as
desired.

Remember, having only one tab is the same as having no tabs (there’s nothing else to switch to), so in that case the
‘tabs’ key is optional, you can just have the ‘items’ key in the top level. And if you do have a ‘tabs’ key with only one
items, it can’t have ‘tab_header_*’ keys, because they would be meaningless and the program schema validator thinks
you made a mistake by leaving out the other tabs.

case_sensitive: False
screen_width: 80
tabs:
- tab_header_input: tabinput1
tab_header_description: tabdescript1
tab_header_long_description: tablongdescript1
items:

- item_choice_displayed: choice1
item_description: descript1
item_inputs:
- input1

item_returns: return1

{
"case_sensitive": false,
"screen_width": 80,
"tabs": [

{
"tab_header_input": "tabinput1",
"tab_header_description": "tabdescript1",

(continues on next page)

7.6. Blank config templates 25

pytabby, Release 0.1.0

(continued from previous page)

"tab_header_long_description": "tablongdescript1",
"items": [

{
"item_choice_displayed": "choice1",
"item_description": "descript1",
"item_inputs": [

"input1"
],
"item_returns": "return1"

}
]

}
]

}

config = {'case_sensitive': False,
'screen_width': 80,
'tabs': [{'tab_header_input': 'tabinput1',

'tab_header_description': 'tabdescript1',
'tab_header_long_description': 'tablongdescript2',
'items': [{'item_choice_displayed': 'choice1',

'item_description': 'descript1',
'item_inputs': ['input1'],
"item_returns": 'return1' }

]}]
}

7.7 Changelog

This document records all notable changes to pytabby. This project adheres to Semantic Versioning.

7.7.1 0.1.0

• 2019-04-25: Initial release

7.8 Wish list

• a way to dynamically silence (“grey out”, if this were a GUI menu system) certain menu items, which may be
desired during program flow, probably by passing a list of silenced tab names and return values

• have an option to accept single keypresses instead of multiple keys and ENTER with the input() function,
using msvcrt package in Windows or tty and termios in Mac/Linux. (This will make coverage platform-
dependent, so it will have to be cumulative on travis and appveyor)

• incorporate ansimarkup (https://pypi.org/project/ansimarkup/) – is it cross compatible? Will it work with
cmder.exe on windows? So the app could have really cool colored tabs!!! Would colorama work?

• Add MacOS CI (Circle?)

• Fix tests by (1) changing lazy regression tests to true tests, (2) relying less on ordering to be true unit tests, (3)
monkeypatch inputs instead of that ugly menu.Menu._testing hacks

26 Chapter 7. Contents

http://github.com/Prooffreader/pytabby
http://semver.org/
https://pypi.org/project/ansimarkup/

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

27

pytabby, Release 0.1.0

28 Chapter 8. Indices and tables

INDEX

M
Menu (class in pytabby), 17

R
read_json() (pytabby.Menu method), 17
run() (pytabby.Menu method), 17

S
safe_read_yaml() (pytabby.Menu method), 17

29

	Installation
	Documentation
	Usage
	See it in action!
	FAQ
	Dependencies
	Contents
	Tutorial
	API
	Annotated config file
	Example app
	Sample InvalidSchemaError output
	Blank config templates
	Changelog
	Wish list

	Indices and tables
	Index

